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We derive asymptotics for the Lp-norms and information entropies of Charlier

polynomials. The results differ to some extent from previously studied orthogonal

polynomials, for example, the Lp-norms show a peculiar behaviour with two

thresholds. Some complications arise because the measure involved is discrete.
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1. INTRODUCTION

There has been a substantial recent activity on the information entropy
and the related Lp-norms of orthogonal polynomials. Most of the effort has
been put into entropy studies (e.g. [1–4, 10, 11, 14, 16, 18, 19], and the
references given therein), a project that was initiated in 1994 [17]. This
interest has a quantum mechanical origin, in fact being motivated by an
entropy version of Heisenberg’s uncertainty principle [7]. However, there
has also been applications of Lp-norms to operators and extremization on
the Wiener space [24, 25]. For an updated survey, see [15].

Since all cases studied hitherto have involved continuous measures, it
would be interesting to investigate the situation for a discrete one. The
present paper deals with the non-classical Charlier polynomials, orthogonal
with respect to a Poisson distribution. These were introduced by Charlier in
1906 [12] on treating a function expansion problem. They are important in
probability theory, for example they appear in expansions of the Edgeworth
type in convergence to a Poisson distribution [5]. As we shall see, the
discreteness of the measure complicates matters. In return, the results that
emerge are interesting and somewhat different from previously studied
cases.

The paper is organized as follows: The results are formulated and
discussed in Section 2 and proven in Sections 4 and 5. An intermediate
152
0021-9045/02 $35.00
# 2002 Elsevier Science (USA)

All rights reserved.



CHARLIER POLYNOMIALS 153
section treats certain cases of the polynomial asymptotics. The main results
are Theorems 2.1 and 2.7.

This paper is a shortened version of [26], where further information can be
found.

1.1. Notation and Preliminaries

Let a > 0: The Charlier polynomials Cnðx; aÞ may be defined by

Cnðx; aÞ ¼
Xn

k¼0

n

k

 !
ðxÞkð�aÞn�k ; ð1:1Þ

where ðxÞk ¼ xðx � 1Þ � � � ðx � k þ 1Þ is the falling factorial power. They
satisfy the recurrence formula

Cnþ1ðx; aÞ ¼ ðx � n � aÞCnðx; aÞ � anCn�1ðx; aÞ ð1:2Þ

and, most important, the orthogonality relation

X1
x¼0

Cmðx; aÞCnðx; aÞwðxÞ ¼ ann!dmn; ð1:3Þ

where w is the weight function of a Poisson distribution with parameter a:

wðxÞ ¼
axe�a

x!
; x ¼ 0; 1; 2; . . .

As a general reference we mention [32]. We shall suppress the dependence on
a; writing simply CnðxÞ: We point out that one has the possibility of different
normalizations. Our choice, giving monic polynomials, is common, but in
the context of entropies, orthonormal polynomials are more appropriate.
They are denoted by #CCn ¼ Cn=

ffiffiffiffiffiffiffiffiffi
ann!

p
: We also note that the cases p41 of

Theorem 2.1 and (1.1) suggest Cn=ð�aÞn as a natural normalization, see also
Remark 2.3.

Our computations rely heavily on recent results on strong asymptotics of
the Charlier polynomials. A recurring theme is the complication due to the
fact that we are dealing with sums rather than integrals. In the context of Lp-
norms, p=2; these sums can be handled with the Euler–Maclaurin
summation, leading to integrals whose asymptotics can be established by
a technique related to the saddle point method. (The classical saddle point
method, which has been found useful for Hermite polynomials [25], is
applicable only when p ¼ 1:) The hardest part is to analyse the integrand
close to its minimum, for which we use the so-called Lambert W function
and heavy computations.
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The situation is quite different when p ¼ 2 or when entropies are studied.
This is due to the fact that the oscillations in the important region are not
resolved by sampling over the integers. We shall therefore rely on a
combination of Fourier expansions, Poisson’s summation formula and the
method of stationary phase. It is interesting to note that, although the
oscillations are not resolved, we still extract a factor p�1Bðp þ 1

2
; 1
2
Þ; cf. (5.1),

just like when applying the Fej!eer–Bernstein lemma to fast oscillations in an
integral, the typical case for continuous measures [1,25]. The final step when
computing the entropies is a well-known differentiation procedure, justified
by Montel’s theorem from complex analysis.

We shall mainly be concerned with asymptotics as n ! 1: Therefore, we
let f 	 g have the strong meaning that f ¼ Oðg=nsÞ for any given s > 0; at
least if some constants are properly chosen. Moreover, 
 denotes
asymptotic equivalence in the same sense, i.e. f
g iff f � g 	 g; whereas
� means equality within constant factors. We shall find it convenient to put
n ¼ n=a: Finally, c is a positive and finite constant, not necessarily the same
on each occurrence, and indicator functions (characteristic functions) are
denoted by 1:

2. MAIN RESULTS

We turn to the formulation and discussion of our main results. The proofs
will follow in Sections 4 and 5. We state the results for fixed a > 0; but they
obviously extend to a in compact subsets of ð0;1Þ [21].

2.1. Lp-norms

All Lp-norms will be taken with respect to w unless otherwise stated,
so that jjf jjp ¼ f

P1
x¼0 jf ðxÞj

pwðxÞg1=p: The following theorem describes
the asymptotics of these norms of the Charlier polynomials. Recall that
jjCnjj2 ¼

ffiffiffiffiffiffiffiffiffi
ann!

p
and n ¼ n=a:

Theorem 2.1. The following holds as n ! 1:
(a) If 25p51; then

jjCnjjp ¼ cðpÞðn!Þ1�1=pan=pn�ðp�1Þ2=2p2

eS1 ; ð2:1Þ

where S1 is an asymptotic series in n with leading term an1�1=p; see (4.9) and

(4.16).
(b) If 15p52; then

jjCnjjp ¼ cðpÞðn!Þ1�1=pan=pn�ðp�1Þ=2p2

eS2 ; ð2:2Þ
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where S2 is an asymptotic series in n with leading term an1=p; see (4.17) and

(4.18).
(c) If p ¼ 1; then

jjCnjj1 ¼ e�2að2aÞnð1þ Oðn�1ÞÞ:

(d) If 05p51; then

jjCnjjp ¼ aneS3 ; ð2:3Þ

where S3 is an asymptotic series in n with leading term a
pn

p; see (4.19) and

(4.22).
The constants cðpÞ are given by

cðpÞ ¼
1

ð2pa1=pÞðp�1Þ=2pp1=2p
; p > 2;

cðpÞ ¼
1

ð2papþ1Þðp�1Þ=2pp1=2p
; 15p52:

Remark 2.2. The presence of the S’s makes these formulas a little
untransparent. For concreteness, take p ¼ 3 and a ¼ 1: Then, n ¼ n; d ¼
e ¼ Z ¼ 1

3
in (4.9), and

jjCnjj3 ¼
ðn!Þ2=3n�2=9

ð2pÞ1=331=6
exp n2=3 �

2

3
n1=3 þ

4

9
þ Oðn�1=3Þ

� �
:

To obtain such formulas one needs Si to an absolute error of oð1Þ;
for which our estimations suffice if 05p52

3
; 4

3
5p58

5
; or if 8

3
5p54: By

computing more terms in the asymptotic series, one can, in principle,
do the same for any p; although this seems like a hard task if p is close to 1,
2 or 1:

We remark that the results may be stated in a conciser, but less
informative form. For example, it follows from (4.14) together with the
subsequent argument that

jjCnjj
p
p ¼ gðb0Þe

�F ðb0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

F 00ðb0Þ

s
exp �

p
16a

�
ap
2
nd�e

n o
ð1þ oð1ÞÞ

if p > 7
3
: Here g and F are as in (4.2) and (4.3), and b0 > 1 is the zero of F 0:

The problem is to compute F ðb0Þ to sufficient accuracy.

Remark 2.3. For the sake of completeness, we briefly discuss the case
p ¼ 0: Let jjf jj0 ¼ exp

R
log jf j; a geometric mean of jf j: This is a natural
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definition, since jjf jj0 ¼ limp!0 jjf jjp for any f 2 L0þ :¼
S

p>0 Lp on prob-
ability spaces [20]. (Note, however, that other definitions of L0 and jj � jj0
exist in the literature [6, 24].) Now, it readily follows from (3.2) that

log jCnðxÞj ¼ x log nþ n log a þ Oðð1þ x2Þ=nÞ

for integral x 2 ½0; ð1� eÞn�; 05e51: Hence,

Xð1�eÞn

x¼0

log jCnðxÞjwðxÞ ¼ a log nþ n log a þ Oðn�1Þ:

If we could estimate the corresponding sum with x > ð1� eÞn properly, we
would thus have

jjCnjj0 ¼
?

annað1þ Oðn�1ÞÞ: ð2:4Þ

Since upper bounds are trivial, e.g. jCnðxÞj42nx!maxð1; anÞ; the problem is to
give lower bounds, i.e. to show that CnðxÞ is sufficiently far away from zero.
By analysing the proof of Theorem 3.1, notably the fact that z stays away
from 1, one sees that the regions occurring there cause no trouble. Hence,
the question boils down to giving lower bounds on jCnðxÞj for integers jx �
nj4m

ffiffiffi
n

p
; m > 2

ffiffiffi
a

p
; which seems difficult due to the irregular oscillations in

that region.
Note that formal differentiation of (2.3) gives the same result, but that

such a procedure is not easy to justify. In any case, lim supn!1jjCnjj0=
ðannaÞ41: We also remark that numerical evidence supports (2.4).

Remark 2.4. It is interesting to compare these results to the previously
investigated Jacobi and Hermite polynomials [1, 25]. For these polynomials
there is (unless a;b4� 1

2
in the Jacobi case) a threshold value p0 with the

following property: all Lp-norms with p5p0 grow at the same rate; on the
threshold the growth is a little stronger, after which it increases quickly with
p: For Hermite polynomials, p0 ¼ 2; for Jacobi polynomials, p0 can,
depending on the parameters a and b; take any value in ð2;1Þ:
In the present case there are two threshold values: p ¼ 1 and 2: However,

p ¼ 2 appears to be a ‘‘weak’’ threshold, cf. Remark 2.6. On the contrary,
p ¼ 1 has many of the characteristics of a typical threshold, including the
rapid change of dominating region, cf. Remark 2.5. However, the Lp growth
rate increases also for p51: jjCnjjp ¼ oðjjCnjjqÞ whenever 04p5q51: This
seems in fact to be a phenomenon, not previously observed for orthogonal
polynomials.
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The striking behaviour with two thresholds resembles the multimodal
oscillations of the Charlier polynomials, although we do not know if there is
a deeper connection.

Remark 2.5. A related question is where the main contribution to the
norms comes from. If p=2; the proofs in Section 4 and [26] show that the
bulk of the mass is contained in Gaussian peaks, the centre and width of
which are given in Table I. For p ¼ 2 the situation is different. Refining the
argument of Section 5, it is not hard to show that the mass is smeared out
over the interval jx � nj42

ffiffiffiffiffi
an

p
þ cn1=6 log2=3 n; dominant in the sense of 


above. The same statement applies to the entropies. On the other hand, the
L0-mass seems to follow, without normalization, a shifted Poisson
distribution, cf. Remark 2.3.

The case p ¼ 2 is interesting from a general point of view. Orthogonal
polynomials always have oscillating regions, and one would expect the L2-
mass to be concentrated to these, since this is where the orthogonality ‘‘takes
place’’. The Charlier polynomials have a multiple-mode of oscillations, in
effect being oscillating for 04x4n þ 2

ffiffiffiffiffi
an

p
; but the important oscillations

seem to be the central ones, close to x ¼ n:

Remark 2.6. As mentioned, the threshold p ¼ 2 is ‘‘weak’’ in many
senses; the behaviour for 15p52 and p > 2 show large, though not
complete, similarities, cf. Remark 2.9. It is worth noting that parts of the
similarities may be viewed as passing to the conjugate exponent p0 ¼
p=ðp � 1Þ; for example this is true for the values in Table I. Changing p into
p0 also takes S1 into S2; as far as we have computed them, but with the sign
of some terms reversed. We do not know whether a duality argument might
explain these symmetries.

2.2. Information Entropies

The Boltzmann–Shannon information entropy of a probability density
rðxÞ on Rd is defined as SðrÞ ¼ �

R
r log r dx [31]. In quantum mechanical
TABLE I

The Centre (Dominating Term) and Width of the Gaussian Peaks Contributing to the Lp-Norms,

cf. Remark 2.5. The Values are Given in Units of b¼ x=n; Whereas n¼ n=a: For p ¼ 2 and 0 the

Mass Distribution is Non-Gaussian

p Centre Width

ð2;1Þ 1þ n�1=p n�ðpþ1Þ=2p

ð1; 2Þ 1� n�ðp�1Þ=p n�ð2p�1Þ=2p

1 1/2 n�1=2

ð0; 1Þ np�1 n�ð2�pÞ=2
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applications one typically has r ¼ jCj2; C being the wave function. For
many systems, C is given in terms of orthogonal polynomials Pn with respect
to some measure m: The Boltzmann–Shannon entropy is then closely related
to functionals of the form

SnðP Þ ¼
Z

P 2
n log P 2

n dm;

which [17] has called the entropy of Pn; supposed to be orthonormalized.
Note that SnðP Þ50 if m is a probability measure by Jensen’s inequality. If the
distribution is discrete, as in our case, all integrals should be replaced by
sums. In particular,

Snð #CCÞ ¼
X1
x¼0

#CCnðxÞ
2 log #CCnðxÞ

2wðxÞ: ð2:5Þ

Our result about the Charlier entropies is the following.

Theorem 2.7. Let #CCn be the orthonormalized Charlier polynomials. Then,
with notation (2.5),

Snð #CCÞ ¼ ðn þ aÞlog
n
ae

þ 3a þ 1�
1

2
log 2pa þ oð1Þ ð2:6Þ

as n ! 1:

Remark 2.8. This n log n growth seems to be new. Earlier studied
entropies grow like n (Freud, Laguerre) or are bounded (Jacobi and some
other polynomials on compact intervals) [1]. This discrepancy vanishes
partly if we instead consider the Boltzmann–Shannon entropy BnðpÞ :¼
�
R

p2
nw logðp2

nwÞ or the corresponding sum. Namely, the Charlier
polynomials satisfy Bnð #CCÞ ¼ �N 0

nð1Þ ¼
1
2
log n þ c þ oð1Þ; cf. (5.4). From

[1,3] it is easily seen that Bn ¼ c1 log n þ c2 þ oð1Þ for Freud and Laguerre
polynomials as well.

We remark that Bnð #CCÞ ¼ log
ffiffiffi
n

p
þ Oð1Þ which is reasonable, since the

number of contributing integers is of the order
ffiffiffi
n

p
; and the (unit) L2-mass is

fairly uniformly distributed among these, cf. Remark 2.5.

Remark 2.9. Theorem 2.7 implies that

d
dp

jjCnjjp

����
p¼2

¼
1

4
jjCnjj2Snð #CCÞ ¼

1

4
jjCnjj2 n log

n
ae

þ Oðlog nÞ
n o

; ð2:7Þ

which is interesting in the light of Theorem 2.1. Namely, the latter asserts
that, for fixed p > 2; jjCnjjp ¼ ðn!Þ1�1=pan=p expfn1�1=pðc þ oð1ÞÞg: If formal
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differentiation was allowed,

d
dp

jjCnjjp ¼ jjCnjjp
log n!

p2
�

n log a
p2

þ Oðn1�1=p log nÞ
� �

;

which, for p ¼ 2; is (2.7) with a larger error. A similar remark applies for
p52: This nicely illustrates the weakness of the threshold p ¼ 2:

Remark 2.10. Results on entropies always have bearing on logarithmic
potential theory. Namely, the logarithmic potential of a Borel measure m
on C is defined as V ðz; mÞ ¼ �

R
log jz � xj dmðxÞ: If we take m ¼

P1
x¼0 wðxÞdx

as the Poisson measure and put dnnðxÞ ¼ #CCnðxÞ
2 dmðxÞ; then Snð #CCÞ ¼ 2 log kn

�2
Pn

j¼1 V ðzn;j; nnÞ; where zn;j are the zeros and kn ¼ ðann!Þ�1=2 is the
leading coefficient of #CCn [15, Sect. 3]. It follows from Theorem 2.7
that

�
Xn

j¼1

V ðzn;j; nnÞ ¼ n log
n
e
þ

2a þ 1

4
log

ne2

a
þ oð1Þ

as n ! 1: Note that zn;j are the local minima of V ð�; nnÞ [19].

3. ASYMPTOTICS OF THE CHARLIER POLYNOMIALS

Unlike most classical polynomials, the Charlier polynomials do not
satisfy a second-order linear differential equation, rendering the task of
establishing sharp asymptotics more difficult. The first approach, due to
Maejima and Van Assche [27, 33] was probabilistic and valid for x50: Goh
[22] used integral representations, and his results were improved by Rui and
Wong [30], still covering only en4x4Mn:

A completely different method was used in an ingenious paper by Dunster
[21], who, via a hypergeometric representation, derived a differential
equation for the Charlier polynomials with the roles of the parameter a
and the variable x reversed. This enabled him to use the theory of
asymptotics for differential equations [8, 28] to prove complete and
uniform asymptotics for all real x; even uniformly in a; subject to certain
restrictions.

We shall localize and extend Dunster’s results to suit our needs. Note that
(b) is a sharpened version of Goh’s Theorem 1 [22]. However, (a) does not
resemble his Theorem 7, due to the fact that the zeros of Cn lie close to the
integers, making the leading term vanish there.

For the reader’s convenience, we collect some notation used in the
theorem. Thus, x ¼ nb and r ¼ nj1� bj: In addition, z ¼ ðn þ 1

2
Þ
ffiffiffi
z

p
=r;
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where z is given by (3.6), and

cðzÞ ¼ arcsech z �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
� log

2

ez
�

1

4
z2 ¼

z4

32
þ Oðz6Þ ð3:1Þ

as z ! 0:

Theorem 3.1. Let M > 1 and m > 2
ffiffiffi
a

p
be fixed constants. Moreover, let

r; c; and z be as in the proof given below, see (3.8)–(3.9), or the last paragraph

above. Then the following hold as n ! 1:
(a) If 04b41� mn�1=2 and nb is an integer, then

CnðnbÞ ¼
ð�1Þnð1�bÞane�ab=ð1�bÞ

ð1� bÞnð1�bÞþ1=2

n
ae

� �nb
e�rcðzÞ 1þ O

1

nð1� bÞ2

� �� �
: ð3:2Þ

(b) If 1þ mn�1=24b4M ; then

CnðnbÞ ¼
n!bnbþ1=2e�a=ðb�1Þffiffiffiffiffiffiffiffi
2pn

p
ðb� 1Þnðb�1Þþ1=2

e�rcðzÞ 1þ O
1

nðb� 1Þ2

� �� �
: ð3:3Þ

If b is bounded away from 1, then rcðzÞ ¼ Oðn�1Þ; and the factor e�rcðzÞ can be

ignored.

Proof. The proof of (b) is similar to the case b5e of (a), and so we only
prove (a). Fixing a small number e; we divide this into the cases b4e and
b5e:

Let us start with the former, assuming without loss of generality that
x510; say. (Otherwise, y ¼ Oðn�1Þ in (3.4), and the result is immediate.) By
(1.1),

CnðxÞ ¼
Xx

k¼0

n

k

 !
ðxÞkð�aÞn�k ¼ :

Xx

k¼0

Tk ;

since x is an integer. Introducing

qk ¼
Tx�k

Tx�kþ1
¼ �

aðx � k þ 1Þ
kðn � x þ kÞ

¼ �
y
k
þ Oðn�1Þ; ð3:4Þ

where

y ¼
ax

n � x
;
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we have CnðxÞ ¼ Txð1þ q1 þ q1q2 þ � � � þ q1 � � � qxÞ: Taking e small, we may
assume that y41

2
: Now, by (3.4),

q1 � � � qk ¼
ð�yÞk

k!
þ Zk

with jZk j4ðyþ Oðn�1ÞÞk � yk : Hence,

CnðxÞ ¼ Tx

Xx

k¼0

ð�yÞk

k!
þ Z

 !

with

jZj4
X1
k¼0

ððyþ Oðn�1ÞÞk � ykÞ ¼ Oðn�1Þ:

Since
P

k>x y
k=k! ¼ Oðn�1Þ as well, we conclude that CnðxÞ ¼ Txe�yð1þ

Oðn�1ÞÞ; and the result follows from Stirling’s formula.
For the case e4b41� mn�1=2 we shall use Dunster’s Subcase IIa [21].

Combined with [21, Sect. 4] and estimate (3.11) from [8] this gives, for
integers x ¼ nb in the interval under consideration,

CnðnbÞ ¼ ð�1Þnð1�bÞn!ea=2bnb=2þ1=4 ae
n

� �nð1�bÞ=2

� Jnð1�bÞððn þ 1
2
Þ
ffiffiffi
z

p
Þð1þ Oðn�1ÞÞ;

ð3:5Þ

where J is a Bessel function of the first kind and

z ¼ zðtÞ ¼ c1t þ c2t2 þ Oðt3Þ ð3:6Þ

(uniformly in b) is an analytic function of t ¼ a=ðn þ 1
2
Þ ! 0: The first two

coefficients of this Taylor expansion are given by

c1 ¼
4

e
A ¼ :

4

e
nbþ 1

2

n þ 1
2

 !�ðnbþ1=2Þ=nð1�bÞ

;

c2 ¼
c1

ð1� bÞ2
1þ

1

2n

� �2 c1
2
�

1þ bþ n�1

1þ 1
2
n�1

 !
:
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We turn our interest to the Bessel function. By Eq. (7.16) of [28,
Chap. 10],

JrðrzÞ ¼
e�rgffiffiffiffiffiffiffiffi
2pr

p ð1þ Oðr�1 þ z2ÞÞ ð3:7Þ

uniformly in 05z4z051 as r ! 1; where

g ¼ arcsech z �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

p
¼ : log

2

ez
þ

1

4
z2 þ cðzÞ: ð3:8Þ

Thus, cðzÞ ¼ z4=32þ Oðz6Þ as z ! 0: Moreover, the assumption m > 2
ffiffiffi
a

p
implies that z is bounded away from one, so that g stays away from zero. We
have r ¼ nj1� bj and

z ¼
ðn þ 1

2
Þ
ffiffiffi
z

p
nj1� bj

¼

ffiffiffiffiffiffiffi
c1a

p
ffiffiffi
n

p
j1� bj

1þ
m
n
þ Oðn�2Þ

� �
ð3:9Þ

with

m ¼
ac2
2c1

þ
1

4
:

(The absolute values make these expressions valid in the case (b) too.)
Hence,

g ¼
1

2
log n þ log

1� bffiffiffiffiffiffiffiffi
aeA

p þ
aA

eð1� bÞ2
� m

� �
1

n
þ cðzÞ þ O

1

n2ð1� bÞ2

� �
:

Inserting this into (3.7) gives

Jnð1�bÞððn þ 1
2
Þ
ffiffiffi
z

p
Þ ¼

n�nð1�bÞ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pnð1� bÞ

p
ffiffiffiffiffiffiffiffi
aeA

p
1� b

 !nð1�bÞ

e�rcðzÞ

� exp ð1� bÞ m�
aA

eð1� bÞ2

� �� �
1þ O

1

nð1� bÞ2

� �� �
;

which, combined with (3.5) and a little algebra, gives the desired result. ]

4. Lp-NORMS: PROOF OF THEOREM 2.1

4.1. The Case p > 2

We start with the case p > 2: This is, along with the case 15p52; the
hardest one, and we shall discuss it in some detail, treating the other cases



CHARLIER POLYNOMIALS 163
more briefly. Let m; M and b ¼ x=n be as in Theorem 3.1, and write

Cn ¼ Cð1Þ
n þ Cð2Þ

n þ Cð3Þ
n

with

Cð1Þ
n ðxÞ ¼ CnðxÞ1fx5n þ m

ffiffiffi
n

p
g;

Cð2Þ
n ðxÞ ¼ CnðxÞ1fn þ m

ffiffiffi
n

p
4x4Mng:

We deal with Cð2Þ
n first, this being the main term. Thus

b 2 I :¼ ½ *aa; *bb�

with

*aa ¼ 1þ mn�1=2; *bb ¼ M :

By (3.3) and Stirling’s formula, we then have

jCð2Þ
n ðxÞjpwðxÞ ¼ n�1gðbÞe�F ðn;bÞe�npðb�1ÞcðzÞ 1þ O

1

nð1� bÞ2

� �� �
ð4:1Þ

with cðzÞ as in Section 3 (cf. (3.1)),

gðbÞ ¼
nðn!Þpe�a

ð2pnÞðpþ1Þ=2
bðp�1Þ=2e�pb=16a ð4:2Þ

and

F ðn; bÞ ¼
ap

b� 1
þ

p
2
logðb� 1Þ �

pb
16a

þ nb log
n
ae

þ nðpðb� 1Þ logðb� 1Þ � ðp � 1Þb log bÞ:
ð4:3Þ

To reduce the notational burden, we suppress the dependence of F on n and
write F ðn; bÞ ¼: F ðbÞ: Note, however, that this dependence is central for the
coming asymptotics.

The main part of the computation of jjCð2Þ
n jjp is the estimation of the sum

S :¼ n�1
X

b2n�1Z\I

gðbÞe�F ðbÞ:

We shall approximate S by an integral using the Euler–Maclaurin
summation formula [9]. Adapted to the present range of b values, the latter
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reads as

S ¼
Z *bb

*aa

hðbÞ dbþ
1

ð2k þ 1Þ!n2kþ1

Z *bb

*aa

hð2kþ1ÞðbÞ *BB2kþ1ðnbÞ db

þ
hð *aaÞ þ hð *bbÞ

2n
þ
Xk

j¼1

B2j

ð2jÞ!n2j
½hð2j�1Þ�

*bb
*aa

( )
¼: S1 þ S2 þ S3;

ð4:4Þ

where h ¼ ge�F ; B2j are the Bernoulli numbers, *BB2kþ1 denotes the 1-periodic
extension of the ð2k þ 1Þth Bernoulli polynomial from the interval ½0; 1�; and
½f �ba ¼ f ðbÞ � f ðaÞ: We have made the harmless assumption that n *aa and n *bb
are integers.

We treat the main term S1 first, which requires a study of the function F :
Differentiating, we find

F 0ðbÞ ¼ �ap
1

b� 1
�

1

4a

� �2

þn log
n
a
þ nðp logðb� 1Þ � ðp � 1Þ log bÞ;

F 00ðbÞ ¼
2ap

ðb� 1Þ3
�

p

2ðb� 1Þ2
þ n

p
b� 1

�
p � 1

b

� �
: ð4:5Þ

Now, it is easy to see that F 00ðbÞ > 0 on I for large n: Moreover, F 0ð *aaÞ ¼
�ðp=2� 1Þn log n þ OðnÞ ! �1 and F 0ð *bbÞ ¼ n log n þ OðnÞ ! þ1 as n !
1: Thus, at least for large n; F 0 has a unique zero, say b0 2 I ; corresponding
to a strict, global minimum of F :

As usual in such contexts, the main contribution to the integral comes
from a small neighbourhood of b0: We shall, therefore, calculate b0 ¼ b0ðnÞ
and, most important, F ðb0Þ; to some accuracy. First, note that limn!1

F 0ðbÞ ¼ þ1 for any fixed b 2 I : Thus, for large n; 15b05b; and so b0 ! 1:
Putting

y ¼
1

b� 1
�

1

4a
;

the equation F 0ðbÞ ¼ 0 can be written as

y2 þ
n
a
log y ¼

n
2a

U ð4:6Þ

with

U ¼
2

p
log

n
a
�

2ðp � 1Þ
p

log b� 2 log 1þ
1

4ay

� �
¼

2

p
log

n
a
þ oð1Þ: ð4:7Þ
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Equation (4.6) has the implicit solution

y ¼ eU=2G
2aeU

n

� �
; ð4:8Þ

where GðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W ðxÞ=x

p
¼ 1� 1

2x þ
5
8x

2 � 49
48x

3 þ � � � and W ; known as the

Lambert W function [13], satisfies W ðxÞeW ðxÞ ¼ x:
The above can be used to calculate y (and thus b) iteratively. We shall find

it convenient to introduce the following notation:

d ¼ 1=p 2 ð0; 12Þ; e ¼ 1� 2d 2 ð0; 1Þ; Z ¼ minðd; eÞ: ð4:9Þ

Moreover, n ¼ n=a as always. Thus, U ¼ 2d log nþ oð1Þ: Inserting this into
(4.8) gives y ¼ nd þ oðndÞ; so that U ¼ 2d log nþ Oðn�dÞ: Starting from this,
one then iterates, letting (4.7) and (4.8) feed each other. Each iteration
reduces the error by a factor nZ: The rather tedious calculations can be found
in [26]. The result, to the fourth order, is

y0 ¼ nd � nd�e �
p � 1

p
þ

1

4a

� �
þ

5

2
nd�2e þ 2

p � 1

p
þ

1

4a

� �
n�e

þ
p � 1

2p2
n�d �

49

6
nd�3e � 8

p � 1

p
þ

1

4a

� �
n�2e

�
ðp � 1Þð2ap þ p � aÞ

2ap2
þ

1

16a2

� �
n�d�e

þ
ðp � 1Þðp � 2Þ

3p3
n�2d þ Oðnd�4ZÞ;

where y0 corresponds to b0: This, in turn, means that b0 ¼ 1þ n�d þ
Oðn�d�ZÞ:

This can be used to compute F ðb0Þ; a task that is simplified a little by
taking into account that F 0ðb0Þ ¼ 0: Another page of straightforward but
tiresome calculations [26] results in

�F ðb0Þ ¼ �ðn log n � nÞ þ n log a þ
1

2
log

n
a
þ a þ

p
16a

þ p *SS1;
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where *SS1 is an asymptotic series in n; starting with

*SS1 ¼ andþe � and þ
aðp � 1Þ

2p
ne þ

a
2
nd�e þ

aðp � 2Þ
p

þ
aðp � 1Þð2p � 3Þ

6p2
ne�d þ Oðn1�4ZÞ:

ð4:10Þ

This looks complicated, but we stress that several cancellations take place
during the computations, suggesting that there is a simpler way to arrive
at the result. For example, the terms n2d; n2d�e; and n2d�2e all cancel,
making it plausible that the error in (4.10) is actually Oðndþe�3ZÞ: As for the
leading term, note that dþ e ¼ 1� 1=p 2 ð1

2
; 1Þ: Using Stirling once again,

one finds

e�F ðb0Þ ¼
an

n!

ffiffiffiffiffiffiffiffiffiffi
2pn2

a

s
eaþp=16aþp *SS1ð1þ Oðn�1ÞÞ: ð4:11Þ

Moreover,

F 00ðb0Þ ¼ apn1þdð1þ Oðn�ZÞÞ: ð4:12Þ

We turn to the local approximation of F near b0: Let

Fj ¼ F ðjÞðb0Þ; j50;

be the derivatives of F at b0; and similarly for g: Put

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l log n

F2

s
;

where l is a large constant, and consider the disc

J ¼ fb; jb� b0j4og

in the complex plane. We shall see that the bulk of the contribution comes
from J \ R; which we, by abuse of notation, call J as well.

First, note that if f is an analytic function, fð0Þ ¼ f0ð0Þ ¼ 0; f00ð0Þ=0
and sup jfð3Þj4A in a suitable neighbourhood of the origin, then fðzÞ=0 for
05jzj53jf00ð0Þj=A: In the region jb� b0j5

1
2
n�d (say) we have jF ð3ÞðbÞj4c

n1þ2d: Since F2 � n1þd this means that F ðbÞ � F0=0 for 05jb� b0j4cn�d: In
particular,

f ðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðbÞ � F0

p
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is analytic on J ; and we choose it to be increasing on the real line. We note in
passing that jF ðjÞj4cn1þðj�1Þd on J ; j52; as follows from (4.5).

Now, F ðb0 � oÞ � F05cF2o2 ¼ cl log n; so that e�ðF�F0Þ4n�cl on
I =J : Since anything that occurs in front of this exponential in (4.4), i.e.
products of derivatives of g and F ; are bounded by fixed (depending on k
only) powers of n; we see that by choosing l large enough, everything
outside J is negligible in the sense of 	 in Section 1.1. In particular, S3 	
S1: Moreover,

S1
e�F0

Z
J

gðbÞe�f ðbÞ2 db:

On J we introduce u ¼ f ðbÞ as a new variable, ranging over the interval

Ju :¼ f ðJ Þ*fu; juj4c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l log n

p
g:

Hence,

Z
J

gðbÞe�f ðbÞ2 db ¼
Z

Ju

gðbÞ
f 0ðbÞ

e�u2 du ð4:13Þ

and we must investigate f 0 more carefully. Expanding F in a Taylor series
around b0 and differentiating formally (which can be justified e.g. by the
Cauchy integral formula), one readily finds

f 0ðbÞ ¼

ffiffiffiffiffi
F2

2

r
1þ

F3

3F2
ðb� b0Þ þ Oðn2dðb� b0Þ

2Þ
� �

on J : Moreover, b� b0 ¼ u
ffiffiffiffiffiffiffiffiffiffi
2=F2

p
þ Oðu2=nÞ: Hence, the right-hand side of

(4.13) equals

g0

ffiffiffiffiffi
2

F2

r Z
Ju

1þ u
g1
g0

�
F3

3F2

� � ffiffiffiffiffi
2

F2

r
þ O

u2

ndþe

� �� �
e�u2 du

¼ g0

ffiffiffiffiffiffi
2p
F2

r
ð1þ Oðn�d�eÞÞ

and so

S1 ¼ g0e�F0

ffiffiffiffiffiffi
2p
F2

r
ðð1þ Oðn�d�eÞÞ: ð4:14Þ
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It remains to take care of S2: Since any derivative of g is bounded by a
constant times g itself, we have, for any s > 0;

jS2j4
ck

n2kþ1

Z
J

X
a

jfaðbÞj

 !
gðbÞe�F ðbÞ dbþ OðS1=nsÞ;

summing over finitely many fa; each of which is a product of derivatives of
F (no undifferentiated functions) of orders summing up to at most 2k þ 1;
and ck is a constant depending on k only. Moreover, jF 0ðbÞj4cF2jb�
b0j4cnð1þdÞ=2

ffiffiffiffiffiffiffiffiffiffi
log n

p
on J : Hence, we can estimate each fa by a constant

times ðF 0ÞtF ðs1Þ � � � F ðsmÞ; with si52 and tþ
P

i si42k þ 1: Thus,

jfaj4cntð1þdÞ=2þ
P

ð1þðsi�1ÞdÞ logt=2 n4cnðmþt=2Þð1�dÞþdð2kþ1Þ logt=2 n:

But 2k þ 15tþ
P

si5tþ 2m; so this is bounded by

nð1þdÞð2kþ1Þ=2 logt=2 n4cn3ð2kþ1Þ=4:

Since we may take k as large as we please, we see that S2 	 S1: Recalling
(4.2), (4.11), (4.12), and (4.14), we have shown that

S 
 S1 ¼
n!ffiffiffiffiffiffi
2p

p
 !p�1

ann�ðp�1Þ2=2p ep *SS1

aðp�1Þ=2p
ffiffiffiffi
p

p ð4:15Þ

(the errors are absorbed into *SS1).
Now, the interval I is chosen so that the O-term in (4.1) is bounded on I

and is Oðn�eÞ on J : Hence, the only problem in passing from S to jjCð2Þ
n jjpp lies

in the factor e�npðb�1ÞcðzÞ: This will result only in a small correction of *SS1; we
sketch the reason for this, omitting the details.

It is not hard to see that one needs to only consider the first term z4=32 in
the Taylor series of cðzÞ; leading to an extra term ap=2nðb� 1Þ3 in F : This
changes b0 into *bb0; say, but still *bb0 ¼ 1� n�d þ Oðn�d�ZÞ: Now, within a
region jb� *bb0j5

1
2
n�d; nðb� 1Þz4 varies only within constant factors. It

follows that essentially all the mass still lies in J : But there,

�npðb� 1ÞcðzÞ ¼ �
ap
2
nd�e �

3ap

nðb0 � 1Þ4
ffiffiffiffiffi
F2

p u þ Oðn�2eu2Þ:

The first term above is constant and adds into p *SS1: The remaining ones
result in a relative error Oðnd�e�2ZÞ; which may be absorbed into *SS1: Thus,
(4.15) holds with S replaced by jjCð2Þ

n jjpp provided that one changes *SS1
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into S1 ¼ *SS1 � a
2
nd�e:

S1 ¼ andþe � and þ
aðp � 1Þ

2p
ne

þ
aðp � 2Þ

p
þ

aðp � 1Þð2p � 3Þ
6p2

ne�d þ Oðn1�4ZÞ:
ð4:16Þ

Taking pth roots in (4.15) with these corrections, we get (2.1) with Cð2Þ
n in the

place of Cn:
We finally estimate Cð1Þ

n and Cð3Þ
n : Let us start with the latter, i.e. x > M :

Provided that M51þ a; the modulus of the terms in (1.1) is increasing, so
that jCð3Þ

n ðxÞj4ðn þ 1Þxn and

jCð3Þ
n ðxÞjpwðxÞ4cxxnp�x4

c
x

� �x=2
:

Summing over x5Mn gives jjCð3Þ
n jjpp ¼ oð1Þ 	 jjCð2Þ

n jjpp:
As for Cð1Þ

n ; split the interval ½0; n þ m
ffiffiffi
n

p
Þ into the three parts

½0; n � m
ffiffiffi
n

p
Þ; ½n � m

ffiffiffi
n

p
; nÞ and ½n; n þ m

ffiffiffi
n

p
Þ; denoting the corresponding

polynomials Cð1;1Þ
n through Cð1;3Þ

n : The first part is easily estimated by means
of (3.2). For the second one, note that if x ¼ n � Oð

ffiffiffi
n

p
Þ; then the modulus

of the summand in (1.1) is maximized for k ¼ k0 ¼ n � Oð
ffiffiffi
n

p
Þ: It follows

that

jCð1;2Þ
n ðxÞj4ðn þ 1Þ

n

k0

 !
ðxÞk0a

n�k04nc
ffiffi
n

p
n!:

This gives jjCð1;2Þ
n jjpp4nc

ffiffi
n

p
anðn!Þp�1 	 jjCð2Þ

n jjpp; since S1 � n1�1=p and
1� 1=p > 1

2
: Estimating the third part similarly completes the proof of (2.1).

4.2. The Case 15p52

As mentioned, this case is very similar to the one just discussed, and so we
refer to [26] for the proof. For the statement of Theorem 2.1 we only
mention that with

d ¼ 1� 1=p 2 ð0; 1
2
Þ; e ¼ 1� 2d 2 ð0; 1Þ; Z ¼ minðd; eÞ ð4:17Þ

we have

S2 ¼ andþe � and �
a
2p

ne þ
aðp � 2Þ

p
þ

að3� pÞ
6p2

ne�d þ Oðn1�4ZÞ: ð4:18Þ
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4.3. The Case p ¼ 1

The threshold value p ¼ 1 turns out to be the simplest case, due to the
fact that the n log n-term in F vanishes. Namely, let m be as in Theorem 3.1,
put Cn ¼ Cð1Þ

n þ Cð2Þ
n ; the main term being

Cð1Þ
n ðxÞ ¼ CnðxÞ1fx 2 Ig;

where

I ¼ ½0; 1� mn�1=2�:

Aiming for jjCð1Þ
n jj1; we investigate the sum

S :¼ n�1
X

b2n�1Z\I

gðbÞe�nF ðbÞ;

where

gðbÞ ¼ an

ffiffiffiffiffiffi
n
2p

r
e�a=ð1�bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1� bÞ

p
and

F ðbÞ ¼ b log bþ ð1� bÞ logð1� bÞ;

cf. (3.2). This notation has the same significance, and hence not the same
wording, as that of Section 4.1. Now, F is minimized at b ¼ 1

2
: Euler–

Maclaurin shows that S 

R

J gðbÞe�nF ðbÞ db; with

J ¼ fb; jb� 1
2
j4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l log n=n

p
g;

l a large constant. By the classical saddle point method [9],

S ¼ gð1
2
Þe�F ð1=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

nF 00ð1=2Þ

s
ð1þ Oðn�1ÞÞ ¼ e�2að2aÞnð1þ Oðn�1ÞÞ:

Since the factor e�rcðzÞ in (3.2) is now insignificant, we may replace S by
jjCð1Þ

n jj1:
As for the remainder, split Cð2Þ

n into two parts. The first one,
corresponding to n � m

ffiffiffi
n

p
5x5n is treated as in the end of Section 4.1.

Following [25] we estimate the second one, say Cð2;2Þ
n ; by Lyapounov’s

inequality, which, for a function f on a finite measure space with total
mass A and 05p4q51; reads jjf jjp4A1=p�1=qjjf jjq: We take q ¼ 2
and note that Cð2;2Þ

n lives on the half-line ½n;1Þ; having w-mass A4can=n!:



CHARLIER POLYNOMIALS 171
Thus,

jjCð2;2Þ
n jj14A1�1=2jjCnjj24can 	 jjCð1Þ

n jj1

and the proof is complete.

4.4. The Case 05p51

We finally discuss the case 05p51: This is again similar to, but much
simpler than p > 2: Take g 2 ð0; 1Þ; and write Cn ¼ Cð1Þ

n þ Cð2Þ
n with Cð1Þ

n living
on

b 2 I :¼ ½n�1; g�:

Adjusting the summand by a relative error of Oðbþ 1=nbÞ; jjCð1Þ
n jjpp goes into

S :¼
anpe�affiffiffiffiffiffiffiffi

2pn
p X

b2n�1Z\I

e�F ðbÞ

with

F ðbÞ ¼ nð1� pÞb log
n
ae

þ
1

2
log bþ nðb log bþ pð1� bÞ logð1� bÞÞ;

cf. (3.2). As usual, F has a minimum at b0 2 I ; but b0 ! 0 this time.
Substituting y ¼ 1=b and putting, besides n ¼ n=a;

d ¼ 1� p; e ¼ 1� d ¼ p; Z ¼ minðd; eÞ; ð4:19Þ

the equation F 0ðbÞ ¼ 0 takes the form

log y �
y
2n

¼ U

with U ¼ d log n� p logð1� bÞ: This equation has the implicit solution

y ¼ 2nT
eU

2n

� �
; ð4:20Þ

where T ðxÞ ¼ �W ð�xÞ ¼ x þ x2 þ 3
2
x3 þ � � � and W is again the Lambert W

function, cf. Section 4.1. (T is known as the tree function, being the
generating function for the number of trees on n vertices [13].) Moreover,

eU

2n
¼

n�e

2a
ð1� y�1Þ�p: ð4:21Þ
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Proceeding as in Section 4.1, letting (4.20) and (4.21) feed each other, one
readily computes the first few terms in the asymptotic expansion for y0:

y0 ¼ nd þ p þ
1

2a
nd�e þ Oðnd�2ZÞ:

In particular, b0 ¼ n�d þ Oðn�d�ZÞ: This gives, recalling that F 0ðb0Þ ¼ 0;

�F ðb0Þ ¼ nð1� pÞb0 � np logð1� b0Þ �
1

2
log b0 þ

1

2
¼

d
2
log nþ a þ pS3

with

S3 ¼
a
p
ne �

a
2
ne�d �

a
p
þ Oðne�2ZÞ ð4:22Þ

and F 00ðb0Þ ¼ an1þdð1þ Oðn�ZÞÞ; see [26] for the computational details.
The argument then goes as in Section 4.1, and results in S ¼ anpepS3 ;

which is (2.3) with S in the place of jjCnjjpp: As for the rest, we only mention
that Cð2Þ

n is most easily estimated by Lyapounov’s inequality as in Section
4.3, but with q ¼ 1; using the just proven L1 result.

5. ENTROPIES: PROOF OF THEOREM 2.7

We turn to the information entropy

Snð #CCÞ ¼
X1
x¼0

#CCnðxÞ
2 log #CCnðxÞ

2wðxÞ

of the orthonormal Charlier polynomials #CCn ¼ Cn=
ffiffiffiffiffiffiffiffiffi
ann!

p
: Note that Snð #CCÞ

¼ 4 d
dpjj

#CCnjjp evaluated at the threshold p ¼ 2; but that this derivative cannot
be calculated directly from Theorem 2.1, cf. Remark 2.9. Instead, we adopt
a technique introduced by Aptekarev et al. [1]. For p close to 1, define

NnðpÞ ¼
X1
x¼0

ð #CCnðxÞ
2wðxÞÞp:

Then

N 0
nð1Þ ¼

X
#CCnðxÞ

2 log #CCnðxÞ
2wðxÞ þ

X
#CCnðxÞ

2wðxÞ log wðxÞ

¼: Snð #CCÞ þ Tnð #CCÞ:

It turns out that Tnð #CCÞ is fairly simple to compute. Let us therefore start with
N 0

nð1Þ: We shall see that most of the contribution comes from the central
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region jx � nj52
ffiffiffiffiffi
an

p
; whence Theorem 4 of Goh [22] suits our needs. With

the notation

x ¼ n þ a þ x
ffiffiffi
n

p
the latter asserts that

#CCnðxÞ ¼

ffiffiffiffi
n!

p
ex

2=4þa=2

an=2ðanÞ1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p sin y

p n
a

� �ðx�nÞ=2
ðcos jþ Oðn�1=4ÞÞ

uniformly on

Ie:¼ fx; jxj42
ffiffiffi
a

p
� eg

for any e > 0: Here

cos y ¼
x

2
ffiffiffi
a

p
and

j ¼ 2
ffiffiffiffiffi
an

p
ðy cos y� sin yÞ þ aðy� sin y cos yÞ þ

p
4
:

By abuse of notation, we sometimes consider Ie as a set of corresponding
values of x: We shall also write oe for little order as e ! 0 (rather than
n ! 1). Now, restrict x to some Ie: A straightforward computation shows
that

#CCnðxÞ
2wðxÞ ¼

1

p
ffiffiffiffiffi
an

p
sin y

ðcos2 jþ Oðn�1=4ÞÞ:

As an approximation of NnðpÞ we consider the sum

Nnðp; eÞ ¼
1

p
ffiffiffiffiffi
an

p
 !pX

Ie

jcos jj2p

jsin yjp
;

where the sum is taken over those x 2 Ie such that x ¼ n þ a þ x
ffiffiffi
n

p
is an

integer.
Expand jcos jj2p in a Fourier series

P
m2Z bmeimj: After differentiation, it

follows from a theorem of Zygmund [34, VI. (3.6)] that
P

m2Z jmj1=2jbmj is
bounded for p in a (complex) neighbourhood of 1. Moreover,

b0 ¼
1

2p

Z 2p

0

jcos jj2p dj ¼ p�1Bðp þ 1
2
; 1
2
Þ; ð5:1Þ
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where B is the Beta function. Hence, Nnðp; eÞ ¼
P

m2Z Um with

Um ¼ bm
1

p
ffiffiffiffiffi
an

p
 !pX

Ie

eimj

jsin yjp
:

The terms with m=0 are small due to cancellations as we shall see.
Summing over x 2 Ie and using Euler–Maclaurin, the main term is found
to be

U0 ¼ MnðpÞð1þ oeð1Þ þ Oðn�1=2ÞÞ

with

MnðpÞ ¼
2
ffiffiffiffiffi
an

p
p

1

p
ffiffiffiffiffi
an

p
 !p

Bðp þ 1
2
; 1
2
ÞBð1� p

2
; 1
2
Þ:

We turn to the estimation of the remainder terms. Let us, for m=0;
write

Um ¼ bm
1

p
ffiffiffiffiffi
an

p
 !pX

Ie

f ðxÞeim
ffiffi
n

p
gðxÞ; ð5:2Þ

where

f ðxÞ ¼
1

jsin yjp
;

gðxÞ ¼ 2
ffiffiffi
a

p
ðy cos y� sin yÞ þ Oðn�1=2Þ:

Put f and g equal to zero outside Ie: If we for notational simplicity assume a
to be integral, the sum in (5.2) can be written as

X
x2n�1=2Z

f ðxÞeim
ffiffi
n

p
gðxÞ ¼

X
k2Z

hðkÞ ¼
X
k2Z

#hhðkÞ;

where we have used Poisson’s summation formula with

hðxÞ ¼ f ðn�1=2xÞeim
ffiffi
n

p
gðn�1=2xÞ

and

#hhðkÞ:¼
Z
R

hðxÞe�2pikx dx ¼
ffiffiffi
n

p Z
R

f ðyÞei
ffiffi
n

p
ðmgðyÞ�2pkyÞ dy:
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Since g0ðyÞ ¼ yþ Oðn�1=2Þ; the phase above can have a stationary point only
if jkj4cjmj; in which case the method of stationary phase [23] gives

j #hhðkÞj4
c
ffiffiffi
n

p
ðjmj

ffiffiffi
n

p
Þ1=2

¼
cn1=4ffiffiffiffiffiffi
jmj

p :

For large k we can do better. Namely, if jkj > cjmj; then, by H .oormander’s
bound [23, Theorem 7.7.1],

ðk
ffiffiffi
n

p
Þ2
Z
R

f ðyÞ exp ik
ffiffiffi
n

p m
k

gðyÞ � 2py
� �� �

dy

����
����4c;

so that j #hhðkÞj4c=ðk2
ffiffiffi
n

p
Þ: Summing over k; this yields

jUmj4cjbmj
1

p
ffiffiffiffiffi
an

p
 !p

jmj
n1=4ffiffiffiffiffiffi
jmj

p þ
1

jmj
ffiffiffi
n

p
 !

4cjmj1=2jbmjn�1=4U0:

Hence,
P

m=0 jUmj4cn�1=4U0 and Nnðp; eÞ ¼ U0ð1þ Oðn�1=4ÞÞ: Putting
everything together,X

x2Ie

ð #CCnðxÞ
2wðxÞÞp ¼Nnðp; eÞð1þ Oðn�1=4ÞÞ

¼MnðpÞð1þ oeð1Þ þ Oðn�1=4ÞÞ: ð5:3Þ

By an estimation similar to the ones in Section 4 one finds that the x
outside Ie contribute no more than oeð1Þ times this. Thus, (5.3) holds with the
leftmost term replaced by NnðpÞ: It follows that

NnðpÞ ¼ MnðpÞð1þ oð1ÞÞ

as n ! 1:
Arguing much the same, it is not hard to show that jNnðpÞj4cjMnðpÞj

uniformly on compact subsets of the strip fp; 04Re p52g: But by Montel’s
classical theorem [29, Theorem 14.6], any uniformly bounded sequence of
analytic functions that converges pointwise must in fact converge uniformly
on compact sets. In particular, Nn=Mn ! 1 uniformly on a neighbourhood
of p ¼ 1; and so, by differentiation,

N 0
nð1Þ ¼ Mnð1Þ

Nnð1ÞM 0
nð1Þ

Mnð1Þ
2

þ oð1Þ
� �

¼ log
e

2p
ffiffiffiffiffi
an

p þ oð1Þ: ð5:4Þ

We also need Tnð #CCÞ; which, as often in such contexts, is much simpler to
compute. (See, however [16], which is devoted to this quantity in more
difficult cases.) For Freud polynomials, Tn can even be calculated exactly [1].
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Although this seems not to be the case here, we can easily find
good approximations. Namely, since we need to only consider x ¼ n þ
Oð

ffiffiffi
n

p
Þ;

log wðxÞ ¼ � x log
n
ae

� ðx � nÞ 1þ
1

2n

� �
�

ðx � nÞ2

2n
þ

ðx � nÞ3

6n2

� a �
1

2
log 2pn þ Oðn�1Þ:

ð5:5Þ

On the other hand, using the recurrence and orthogonality relations
(1.2) and (1.3) it is straightforward to compute the following ‘‘central
moments’’:

X1
x¼0

ðx � nÞ #CCnðxÞ
2wðxÞ ¼ a;

X1
x¼0

ðx � nÞ2 #CCnðxÞ
2wðxÞ ¼ 2an þ a2 þ a;

X1
x¼0

ðx � nÞ3 #CCnðxÞ
2wðxÞ ¼ 6a2n þ a3 þ 3a2 þ a:

This gives, together with (5.5),

�Tnð #CCÞ ¼ ðn þ aÞ log
n
ae

þ 3a þ
1

2
log 2pn þ Oðn�1Þ ð5:6Þ

and (2.6) follows by adding (5.4) and (5.6).
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